We present a novel approach to the formation controlling of aerial robot swarms that demonstrates the flocking behavior. The proposed method stems from the Unmanned Aerial Vehicle (UAV) dynamics; thus, it prevents any unattainable control inputs from being produced and subsequently leads to feasible trajectories. By modeling the inter-agent relationships using a pairwise energy function, we show that interacting robot swarms constitute a Markov Random Field. Our algorithm builds on the Mean-Field Approximation and incorporates the collective behavioral rules: cohesion, separation, and velocity alignment. We follow a distributed control scheme and show that our method can control a swarm of UAVs to a formation and velocity consensus with real-time collision avoidance. We validate the proposed method with physical and high-fidelity simulation experiments.
翻译:我们提出了一种新颖的方法来控制空中机器人群群的形成,以展示这种聚集行为。拟议的方法来自无人驾驶飞行器(UAV)的动态;因此,它防止产生任何无法实现的控制投入,并随后导致可行的轨迹。我们通过使用双向能量功能模拟试剂关系,表明互动机器人群构成Markov随机场。我们的算法以中战场匹配为基础,并包含集体行为规则:凝聚力、分离和速度校正。我们遵循一个分布式控制计划,并表明我们的方法可以控制一大批无人驾驶飞行器的形成和速度共识,并避免实时碰撞。我们用物理和高知觉模拟实验来验证拟议方法。