Predicting agents' future trajectories plays a crucial role in modern AI systems, yet it is challenging due to intricate interactions exhibited in multi-agent systems, especially when it comes to collision avoidance. To address this challenge, we propose to learn congestion patterns as contextual cues explicitly and devise a novel "Sense--Learn--Reason--Predict" framework by exploiting advantages of three different doctrines of thought, which yields the following desirable benefits: (i) Representing congestion as contextual cues via latent factors subsumes the concept of social force commonly used in physics-based approaches and implicitly encodes the distance as a cost, similar to the way a planning-based method models the environment. (ii) By decomposing the learning phases into two stages, a "student" can learn contextual cues from a "teacher" while generating collision-free trajectories. To make the framework computationally tractable, we formulate it as an optimization problem and derive an upper bound by leveraging the variational parametrization. In experiments, we demonstrate that the proposed model is able to generate collision-free trajectory predictions in a synthetic dataset designed for collision avoidance evaluation and remains competitive on the commonly used NGSIM US-101 highway dataset.
翻译:预测代理人的未来轨迹在现代AI系统中发挥着关键作用,然而,由于多试剂系统中出现的复杂互动关系,特别是在避免碰撞方面,这具有挑战性。为了应对这一挑战,我们提议将拥堵模式作为背景线索明确学习,并通过利用三种不同思维理论的优势设计新的“Sense-Learn-Reason-Predict”框架,从而产生以下可取的好处:(一) 将拥堵作为背景线索,通过潜在因素将物理方法通常使用的社会力量概念归为次要,并隐含地将距离编码成一种成本,类似于以规划为基础的方法模拟环境的方式。 (二) 通过将学习阶段分解为两个阶段,“学生”可以从“教师”中学习背景线索,同时产生无碰撞轨迹。为了使框架具有可乘性,我们把它拟订为优化问题,并通过利用变式的平衡法来获得上限。在实验中,我们证明拟议的模型能够产生不碰撞轨道轨道预测。 (二) 通过将基于规划的方法模型分为两个阶段,“教师”可以从“教师”中学习背景线索,同时进行常规的合成数据碰撞评估。