The tuning parameter selection strategy for penalized estimation is crucial to identify a model that is both interpretable and predictive. However, popular strategies (e.g., minimizing average squared prediction error via cross-validation) tend to select models with more predictors than necessary. This paper proposes a simple, yet powerful cross-validation strategy based on maximizing squared correlations between the observed and predicted values, rather than minimizing squared error loss for the purposes of support recovery. The strategy can be applied to all penalized least-squares estimators and we show that, under certain conditions, the metric implicitly performs a bias adjustment. Specific attention is given to the Lasso estimator, in which our strategy is closely related to the Relaxed Lasso estimator. We demonstrate our approach on a functional variable selection problem to identify optimal placement of surface electromyogram sensors to control a robotic hand prosthesis.
翻译:调整参数选择战略对于确定一个既可解释又可预测的模型至关重要,但流行战略(例如通过交叉校准尽量减少平均平方预测误差)往往选择预测器比必要的多的模型。本文提出一个简单而有力的交叉验证战略,其基础是最大限度地扩大观测值和预测值之间的正方形关系,而不是为了支持恢复而尽量减少平方差损失。这一战略可以适用于所有受处罚的最低方位估计器,我们表明在某些条件下,该指标隐含了偏差调整。我们特别关注拉索估计器,在这个模型中,我们的战略与放松的激光测算器密切相关。我们展示了我们在功能变量选择问题上的方法,以确定如何最佳地放置地表电图传感器来控制机器人手动脉动。