When searching for exoplanets, one wants to count how many planets orbit a given star, and to determine what their orbital parameters are. If the estimated orbital elements are too far from those of a planet truly present, this should be considered as a false detection. This setting is a particular instance of a general one: aiming to retrieve which parametric patterns are in a dataset corrupted by nuisance signals, with a certain accuracy on their parameters. We search for a decision rule minimizing false and missed detections, either as a function of their relative cost, or when the expected number of false detections is bounded. We find that if the patterns can be separated in a technical sense, it is sufficient to select the parameter regions with highest posterior probability. We then discuss how the obtained posterior probabilities can be calibrated. We apply our procedure to the retrieval of periodic signals in unevenly sampled time series, emulating the search for exoplanets in radial velocity data. We show on a simulation that, for a given tolerance to false detections, the new criterion leads to 15 to 30\% more true detections than other criteria, including the Bayes factor.
翻译:当搜索外行星时, 人们想要计算一个恒星的轨道轨道上有多少行星, 并确定它们的轨道参数。 如果估计轨道元素太远, 与真正存在的行星太远, 这应被视为一种虚假的探测。 这个设置是一般性的特例 : 旨在检索一个被扰动信号腐蚀的数据集中的哪些参数, 其参数具有一定的精确度 。 我们寻找一个决定规则, 以相对成本的函数或假探测的预期数量被捆绑起来 。 我们发现, 如果这些模式在技术上可以分离, 足以选择具有最高远地点概率的参数区域。 我们然后讨论如何校准获得的远地点 。 我们用我们的程序来检索不均匀的抽样时间序列中的周期信号, 模拟在辐射速度数据中搜索外行星 。 我们用一个模拟来显示, 为了对假探测的某种容忍度, 新的标准导致比其他标准( 包括海湾系数) 更15- 30 。