In this paper, we propose CIMS: a novel correction-interpolation method for smoke simulation. The basis of our method is to first generate a low frame rate smoke simulation, then increase the frame rate using temporal interpolation. However, low frame rate smoke simulations are inaccurate as they require increasing the time-step. A simulation with a larger time-step produces results different from that of the original simulation with a small time-step. Therefore, the proposed method corrects the large time-step simulation results closer to the corresponding small time-step simulation results using a U-Net-based DNN model. To obtain more precise results, we applied modeling concepts used in the image domain, such as optical flow and perceptual loss. By correcting the large time-step simulation results and interpolating between them, the proposed method can efficiently and accurately generate high frame rate smoke simulations. We conduct qualitative and quantitative analyses to confirm the effectiveness of the proposed model. Our analyses show that our method reduces the mean squared error of large time-step simulation results by more than 80% on average. Our method also produces results closer to the ground truth than the previous DNN-based methods; it is on average 2.04 times more accurate than previous works. In addition, the computation time of the proposed correction method barely affects the overall computation time.


翻译:在本文中,我们提议CIMS:一种用于模拟烟雾的新校正-内插方法。我们的方法基础是首先产生低框架率烟雾模拟,然后使用时间内插方法提高框架率。然而,低框架率烟雾模拟不准确,因为它们需要增加时间步骤。一个较大的时间步骤模拟产生的结果不同于最初模拟的结果,只是一个小时间步骤。因此,拟议方法纠正了大型时间步骤模拟结果,使其更接近使用基于 U-Net 的 DNNN 模型的相应的小时间步骤模拟结果。为了获得更精确的结果,我们采用了在图像域中使用的模型概念,例如光学流和感官损失。通过修正大型时间步骤模拟结果和它们之间的相互交错,拟议的方法可以高效和准确地产生高框架率烟雾模拟。我们进行定性和定量分析,以证实拟议模型的有效性。我们的分析显示,我们的方法平均将大型时间步骤模拟结果的正方差平均减少80%以上。我们的方法也比先前提议的DNNM的精确度计算方法产生更接近地面的模型结果。在平均时间范围内进行计算。它不会影响整个计算。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2020年12月2日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员