The modeling of time series is becoming increasingly critical in a wide variety of applications. Overall, data evolves by following different patterns, which are generally caused by different user behaviors. Given a time series, we define the evolution gene to capture the latent user behaviors and to describe how the behaviors lead to the generation of time series. In particular, we propose a uniform framework that recognizes different evolution genes of segments by learning a classifier, and adopt an adversarial generator to implement the evolution gene by estimating the segments' distribution. Experimental results based on a synthetic dataset and five real-world datasets show that our approach can not only achieve a good prediction results (e.g., averagely +10.56% in terms of F1), but is also able to provide explanations of the results.
翻译:时间序列的建模在各种各样的应用中变得越来越重要。总的来说,数据随着不同模式的演变而演变,这些模式通常由不同的用户行为造成。根据时间序列,我们定义进化基因,以捕捉潜在的用户行为,并描述行为如何导致时间序列的生成。特别是,我们提议一个统一的框架,通过学习分类师来承认各部分的不同进化基因,并采用对立生成器来通过估计各部分的分布来应用进化基因。基于合成数据集和五个真实世界数据集的实验结果表明,我们的方法不仅能够取得良好的预测结果(例如,平均10.56%的F1值),而且还能够对结果作出解释。