The significant growth of surveillance camera networks necessitates scalable AI solutions to efficiently analyze the large amount of video data produced by these networks. As a typical analysis performed on surveillance footage, video violence detection has recently received considerable attention. The majority of research has focused on improving existing methods using supervised methods, with little, if any, attention to the semi-supervised learning approaches. In this study, a reinforcement learning model is introduced that can outperform existing models through a semi-supervised approach. The main novelty of the proposed method lies in the introduction of a semi-supervised hard attention mechanism. Using hard attention, the essential regions of videos are identified and separated from the non-informative parts of the data. A model's accuracy is improved by removing redundant data and focusing on useful visual information in a higher resolution. Implementing hard attention mechanisms using semi-supervised reinforcement learning algorithms eliminates the need for attention annotations in video violence datasets, thus making them readily applicable. The proposed model utilizes a pre-trained I3D backbone to accelerate and stabilize the training process. The proposed model achieved state-of-the-art accuracy of 90.4% and 98.7% on RWF and Hockey datasets, respectively.


翻译:监控摄像网络的显著增长,使得高效分析这些网络产生的大量视频数据所需的可扩缩的AI解决方案成为了高效分析这些网络产生的大量视频数据的可扩展的AI解决方案。作为对监控录像片段进行的典型分析,视频暴力探测最近受到相当的注意。大部分研究侧重于利用监督方法改进现有方法,很少注意半监督学习方法。在这项研究中,引入了一个强化学习模式,该模式可以通过半监督方法优于现有模型。拟议方法的主要新颖之处在于引入半监督的硬关注机制。采用硬性关注机制,发现关键视频区域,并将其与数据中的非信息性部分分开。通过删除多余数据,并在更高分辨率中侧重于有用的视觉信息,提高了模型的准确性。使用半监督强化学习算法实施硬性关注机制,消除了视频暴力数据集对关注说明的需求,从而使其易于适用。拟议模式利用预先培训的I3D骨干加速和稳定培训进程。拟议的模型通过删除了90.4%和98.7%的RFSet和Asyal的数据,分别实现了90.4%和98.7%的状态。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员