Making chatbots world aware in a conversation like a human is a crucial challenge, where the world may contain dynamic knowledge and spatiotemporal state. Several recent advances have tried to link the dialog system to a static knowledge base or search engine, but they do not contain all the world information needed for conversations. In contrast, we propose a new method to improve the dialogue system using spatiotemporal aware dynamic knowledge. We utilize service information as a way for the dialogue system to link the world. The system actively builds a request according to the dialog context and spatiotemporal state to get service information and then generates world aware responses. To implement this method, we collect DuSinc, an open-domain human-human dialogue dataset, where a participant can access the service to get the information needed for dialogue responses. Through automatic and human evaluations, we found that service information significantly improves the consistency, informativeness, factuality, and engagingness of the dialogue system, making it behave more like a human. Compared to the pre-trained models without spatiotemporal aware dynamic knowledge, the overall session-level score was improved by 60.87\%. The collection dataset and methods will be open-sourced.
翻译:在像人类这样的对话中,让聊天者了解世界是一个关键的挑战,世界可能包含动态知识和时空状态。最近的一些进展试图将对话系统与静态知识库或搜索引擎连接起来,但是它们并不包含对话所需的全部世界信息。相反,我们提议采用新方法,利用时空认识动态知识改进对话系统。我们利用服务信息作为对话系统连接世界的一种方式。该系统根据对话背景和时空状态积极建立一项请求,以获得服务信息,然后生成世界感知反应。为了实施这一方法,我们收集了DuSinc,一个开放式的人类对话数据集,参与者可以在那里获得对话反应所需的信息。我们发现,通过自动和人文评估,服务信息大大改善了对话系统的连贯性、信息性、事实质量和接触性,使对话系统的行为更像人类。与事先训练过的模型相比,没有空间感知动态知识,整个会议级别评分将用60.87%的开放方式加以改进。