We present stability and error analysis for algebraic flux correction schemes based on monolithic convex limiting. For a continuous finite element discretization of the time-dependent advection equation, we prove global-in-time existence and the worst-case convergence rate of 1/2 w.r.t. the L2 error of the spatial semi-discretization. Moreover, we address the important issue of stabilization for raw antidiffusive fluxes. Our a priori error analysis reveals that their limited counterparts should satisfy a generalized coercivity condition. We introduce a limiter for enforcing this condition in the process of flux correction. To verify the results of our theoretical studies, we perform numerical experiments for simple one-dimensional test problems. The methods under investigation exhibit the expected behavior in all numerical examples. In particular, the use of stabilized fluxes improves the accuracy of numerical solutions and coercivity enforcement often becomes redundant.
翻译:我们根据单一正弦曲线限制,对代数通量校正计划进行稳定性和误差分析。对于基于时间的对流方程式的连续有限元素分解,我们要证明全球在时间上的存在和空间半分解的L2错误的最坏情况趋同率(w.r.t. w.r.t.)是空间半分解的L2错误。此外,我们处理原始抗吸附通量的稳定这一重要问题。我们的先验错误分析显示,它们有限的对应方应该满足普遍共振状态。我们在通量校正过程中引入了执行这一条件的限值。为了核查我们的理论研究的结果,我们对简单的一维测试问题进行数字实验。正在调查的方法展示了所有数字示例中的预期行为。特别是,使用稳定通量的通量提高了数字解决方案的准确性,强制操作往往变得多余。