In this paper, we present a system for incrementally reconstructing a dense 3D model of the geometry of an outdoor environment using a single monocular camera attached to a moving vehicle. Dense models provide a rich representation of the environment facilitating higher-level scene understanding, perception, and planning. Our system employs dense depth prediction with a hybrid mapping architecture combining state-of-the-art sparse features and dense fusion-based visual SLAM algorithms within an integrated framework. Our novel contributions include design of hybrid sparse-dense camera tracking and loop closure, and scale estimation improvements in dense depth prediction. We use the motion estimates from the sparse method to overcome the large and variable inter-frame displacement typical of outdoor vehicle scenarios. Our system then registers the live image with the dense model using whole-image alignment. This enables the fusion of the live frame and dense depth prediction into the model. Global consistency and alignment between the sparse and dense models are achieved by applying pose constraints from the sparse method directly within the deformation of the dense model. We provide qualitative and quantitative results for both trajectory estimation and surface reconstruction accuracy, demonstrating competitive performance on the KITTI dataset. Qualitative results of the proposed approach are illustrated in https://youtu.be/Pn2uaVqjskY. Source code for the project is publicly available at the following repository https://github.com/robotvisionmu/DenseMonoSLAM.
翻译:在本文中,我们展示了一种系统,用于利用与移动车辆相连的单一单镜相机,逐步重建一个密集的3D户外环境的几何模型。高官模型提供了丰富的环境代表,有利于更高级别的场景理解、感知和规划。我们的系统使用一个混合的深度预测结构,其中结合了最先进的稀少特征和在一个综合框架内的密集聚变的视觉SLM算法。我们的新贡献包括设计混合稀薄相机跟踪和环圈闭合,以及密集深度预测的尺度估计改进。我们利用稀释方法的动作估计来克服室外车辆情景中常见的大型和可变跨框架迁移。我们的系统然后用全图像校准的密度模型来记录现场图像。这样就可以将现场框架和密集深度预测结合到模型中。通过在密集模型的变形变形中直接应用稀薄方法的制约,实现了稀薄和密集模型之间的全球一致性和一致性。我们为轨迹估计和地表重建的准确性提供了定性和定量结果,展示了KITTI/PSVSO数据库上典型的竞争性性工作表现。在http://Vsqual 的源码库中展示了拟议的模型方法。