This paper presents an accurate, highly efficient, and learning-free method for large-scale odometry estimation using spinning radar, empirically found to generalize well across very diverse environments -- outdoors, from urban to woodland, and indoors in warehouses and mines - without changing parameters. Our method integrates motion compensation within a sweep with one-to-many scan registration that minimizes distances between nearby oriented surface points and mitigates outliers with a robust loss function. Extending our previous approach CFEAR, we present an in-depth investigation on a wider range of data sets, quantifying the importance of filtering, resolution, registration cost and loss functions, keyframe history, and motion compensation. We present a new solving strategy and configuration that overcomes previous issues with sparsity and bias, and improves our state-of-the-art by 38%, thus, surprisingly, outperforming radar SLAM and approaching lidar SLAM. The most accurate configuration achieves 1.09% error at 5Hz on the Oxford benchmark, and the fastest achieves 1.79% error at 160Hz.
翻译:本文提出了一种准确、高效、无须学习的大规模里程计估计方法,使用旋转雷达,经过实证发现可以很好地适应非常不同的环境——室外,从城市到林区,室内的仓库和矿山-而不改变参数。我们的方法将运动补偿与一对多扫描配准相结合,通过减小附近定向面点之间的距离并用鲁棒损失函数缓解离群值的影响。扩展我们之前的CFEAR方法,我们对更广泛的数据集进行了深入的研究,量化了过滤器、分辨率、配准成本和损失函数、关键帧历史和运动补偿的重要性。我们提出了一种新的解决策略和配置,克服了之前的稀疏和偏差问题,并将我们的最新技术水平提高了38%,令人惊讶的是,超越了雷达SLAM和接近激光SLAM。最准确的配置在牛津基准上以5Hz的速度实现了1.09%的误差,而最快的配置则在160Hz的速度下实现了1.79%的误差。