Neural architecture search (NAS) relies on a good controller to generate better architectures or predict the accuracy of given architectures. However, training the controller requires both abundant and high-quality pairs of architectures and their accuracy, while it is costly to evaluate an architecture and obtain its accuracy. In this paper, we propose SemiNAS, a semi-supervised NAS approach that leverages numerous unlabeled architectures (without evaluation and thus nearly no cost). Specifically, SemiNAS 1) trains an initial accuracy predictor with a small set of architecture-accuracy data pairs; 2) uses the trained accuracy predictor to predict the accuracy of large amount of architectures (without evaluation); and 3) adds the generated data pairs to the original data to further improve the predictor. The trained accuracy predictor can be applied to various NAS algorithms by predicting the accuracy of candidate architectures for them. SemiNAS has two advantages: 1) It reduces the computational cost under the same accuracy guarantee. On NASBench-101 benchmark dataset, it achieves comparable accuracy with gradient-based method while using only 1/7 architecture-accuracy pairs. 2) It achieves higher accuracy under the same computational cost. It achieves 94.02% test accuracy on NASBench-101, outperforming all the baselines when using the same number of architectures. On ImageNet, it achieves 23.5% top-1 error rate (under 600M FLOPS constraint) using 4 GPU-days for search. We further apply it to LJSpeech text to speech task and it achieves 97% intelligibility rate in the low-resource setting and 15% test error rate in the robustness setting, with 9%, 7% improvements over the baseline respectively.


翻译:神经架构搜索(NAS) 依靠一个良好的控制器来生成更好的架构或预测给定架构的准确性。 然而, 培训控制器需要丰富和高质量的建筑配对及其准确性, 而评估一个架构和获得其准确性的成本是昂贵的。 在本文中, 我们提出SemNAS, 这是一种半监督的NAS 方法, 利用许多没有标签的架构( 没有评估, 因而几乎没有成本 ) 。 具体地说, SemNAS 1 培训了一个初始精密预测器, 配有一套小规模的架构改进数据配对; 2 使用经过培训的精确性预测器来预测大量建筑的准确性( 没有评估); 3 将生成的数据配对原始数据配对, 以进一步改进预测器来进行。 训练有素的精度预测器可以应用各种NAS 算法, 利用许多没有标签的架构的准确性( 没有评估, 因而几乎没有成本 ) 。 在 NASBSB- 101 基准中, 它在仅使用1/7 的精确性搜索和精确性测试率中, 达到所有 IMSBSBSB 的精确率 的精确率 中, 在测试中, 在测试中, 它在使用15-02 达到相同的精确率中, 达到相同的精确度中, 。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
商业数据分析,39页ppt
专知会员服务
158+阅读 · 2020年6月2日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
22+阅读 · 2019年11月4日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Differential Evolution for Neural Architecture Search
Arxiv
0+阅读 · 2020年12月11日
Arxiv
6+阅读 · 2020年10月8日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
商业数据分析,39页ppt
专知会员服务
158+阅读 · 2020年6月2日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
22+阅读 · 2019年11月4日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员