Multivariate time-series have become abundant in recent years, as many data-acquisition systems record information through multiple sensors simultaneously. In this paper, we assume the variables pertain to some geometry and present an operator-based approach for spatiotemporal analysis. Our approach combines three components that are often considered separately: (i) manifold learning for building operators representing the geometry of the variables, (ii) Riemannian geometry of symmetric positive-definite matrices for multiscale composition of operators corresponding to different time samples, and (iii) spectral analysis of the composite operators for extracting different dynamic modes. We propose a method that is analogous to the classical wavelet analysis, which we term Riemannian multi-resolution analysis (RMRA). We provide some theoretical results on the spectral analysis of the composite operators, and we demonstrate the proposed method on simulations and on real data.
翻译:近年来,随着许多数据获取系统通过多个传感器同时记录信息,多变时间序列变得十分丰富。在本文件中,我们假设变量与某些几何相关,并提出一种基于操作者的方法进行空间时空分析。我们的方法包括三个往往被分别考虑的组成部分:(一) 建筑操作者代表变量几何的多重学习,(二) 用于不同时间样本不同操作者多尺度组成的对称正值确定矩阵的里曼式几何测量,以及(三) 合成操作者的光谱分析,以提取不同动态模式。我们提出了一种类似于典型波段分析的方法,我们称之为里曼多分辨率分析(RMRA)。我们提供了关于合成操作者的光谱分析的一些理论结果,我们展示了模拟和真实数据的拟议方法。