项目名称: 基于驻波场诱导量子相干效应的弱光非线性和原子光刻

项目编号: No.11204367

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 万仁刚

作者单位: 中国科学院西安光学精密机械研究所

项目金额: 25万元

中文摘要: 驻波场和原子耦合体系中的量子相干效应为我们提供了一种有效调控光与原子相互作用的手段。和行波场情况相比,驻波场中的量子相干效应展现出独特的性质,这方面的研究还需要进一步探索和发展。因此,本项目以驻波场诱导的量子相干效应为基础,拟开展以下两方面的基础性研究内容: 1. 利用驻波场相干诱导光子带隙作为高反射率的腔镜在冷原子系综中构建动态磁光控制的光学腔,通过腔对光脉冲的限制和反馈作用增强弱光Kerr非线性效应,用于量子相位门; 2. 利用驻波场空间周期调制原子的吸收、自发辐射等实现高精度原子局域,研究通过驻波场后原子态和原子运动的演化,设计简单易行的高分辨二维原子光刻方案。 通过上述研究,进一步发展利用量子相干控制光和原子相互作用的手段和方法,为其在量子光学、非线性光学和激光物理领域的应用提供有价值的理论依据和参考。

中文关键词: 原子相干;驻波场;原子局域;电磁感应光子带隙;量子成像

英文摘要: Quantum coherence effect in the standing-wave fields coupled atomic system can be ultilized to manipulate the interaction between light and atom effectively. Compared with the case that with traveling-wave, the quantum coherence effect in standing-wave has distinct features that need to be investigated further. Based on the quantum coherence induced by standing-wave fields, the research proposals in this project are given as follows: 1. In the ultracold atomic sample, we devise a dynamic magneto-optically controlled cavity in which the cavity mirrors are formed by the photonic-band-gap structures coherently induced by the standing-wave fields. The cofinement and feedback effects of the cavity enhance the Kerr nonlinearity greatly even at low light level. The large cross phase modulation has practical application in quantum phase gate. 2. By measuring the absorption or spontaneous emission spatically modulated by the standing-wave fields, high precision atom lozalization can be achieved. By investigating the dynamics of the atomic state and atomic motion, we can devise simple two-dimensional atom lithography scheme with high resolution. The investigations in this proposal further develop the method to control the interaction between light and atom with quantum coherence, and have potential applications in

英文关键词: atomic coherence;standing-wave field;atomic localization;electromagnetically induced photonic band gap;quantum imaging

成为VIP会员查看完整内容
0

相关内容

【经典书】图论,322页pdf
专知会员服务
120+阅读 · 2021年10月14日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
【经典书】概率机器人,668页pdf
专知会员服务
68+阅读 · 2020年12月16日
【经典书】操作系统导论,687页pdf
专知会员服务
170+阅读 · 2020年10月28日
【经典书】Python金融大数据分析,566页pdf
专知会员服务
118+阅读 · 2020年8月1日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Verified Compilation of Quantum Oracles
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
13+阅读 · 2021年5月25日
小贴士
相关主题
相关VIP内容
【经典书】图论,322页pdf
专知会员服务
120+阅读 · 2021年10月14日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
【经典书】概率机器人,668页pdf
专知会员服务
68+阅读 · 2020年12月16日
【经典书】操作系统导论,687页pdf
专知会员服务
170+阅读 · 2020年10月28日
【经典书】Python金融大数据分析,566页pdf
专知会员服务
118+阅读 · 2020年8月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员