We propose an efficient and generative augmentation approach to solve the inadequacy concern of underwater debris data for visual detection. We use cycleGAN as a data augmentation technique to convert openly available, abundant data of terrestrial plastic to underwater-style images. Prior works just focus on augmenting or enhancing existing data, which moreover adds bias to the dataset. Compared to our technique, which devises variation, transforming additional in-air plastic data to the marine background. We also propose a novel architecture for underwater debris detection using an attention mechanism. Our method helps to focus only on relevant instances of the image, thereby enhancing the detector performance, which is highly obliged while detecting the marine debris using Autonomous Underwater Vehicle (AUV). We perform extensive experiments for marine debris detection using our approach. Quantitative and qualitative results demonstrate the potential of our framework that significantly outperforms the state-of-the-art methods.
翻译:我们建议一种高效和基因增强的方法,以解决对水下碎片数据不足的关注,以便进行目视探测。我们使用循环GAN作为数据增强技术,将地面塑料的大量公开数据转换为水下图像。先前的工作只是侧重于增加或增强现有数据,这又增加了数据集的偏差。与我们的技术相比,我们的技术设计了变异,将更多的空气中塑料数据转换为海洋背景。我们还提出了一个利用关注机制探测水下碎片的新结构。我们的方法仅有助于关注相关图像,从而增强探测器的性能,在使用自主水下潜水器(AUV)探测海洋废弃物时,这种性能非常强。我们用我们的方法对海洋废弃物的探测进行了广泛的实验。定量和定性结果显示了我们框架的巨大潜力,大大超越了最新方法。