Pre-trained models have been used in many fields in recent years, ranging from natural language understanding to computer vision and natural language generation. However, the performance of these natural language generation models is overly dependent on the scale of the model and the size of the dataset. While the larger language model is excellent in some respects, it cannot learn up-to-date knowledge and is relatively difficult to relearn. In this paper, a new adversarial process learning method called Auto-Learning. This can improve the performance of any natural language generation model without the help of additional datasets. Auto-Learning includes two models: $G$ is a text generation model and $D$ can test whether the data generated by G is legitimate. Firstly, the fine-tuned $D$ model is used as the brain's knowledge base before the process. Then the text generated by the $G$ model is used as the input of $D$ to determine whether the text is legitimate or not. Finally, $G$ is fine-tuned according to the output of $D$. This adversarial process is like a self-escalation of the brain through some a priori knowledge. When this adversarial system wants to learn something new, simply fine-tune the $D$ model. Our approach applies to Autoregressive Language Modeling for all Transformer classes. The results are good in existing experimental tasks, including more grammatical text generation and better performance on some text comprehension tasks.


翻译:近年来,许多领域都采用了预先培训的模型,从自然语言理解到计算机视觉和自然语言生成等,从自然语言理解到计算机视觉和自然语言生成等。然而,这些自然语言生成模型的性能过于依赖模型的规模和数据集的大小。虽然较大的语言模型在某些方面是优秀的,但它无法学习最新知识,而且相对难以再读取。在本文件中,一种称为自动学习的新的对抗性程序学习方法,可以在没有额外数据集帮助的情况下改进任何自然语言生成模型的性能。自动学习包括两个模型:$G$是一个文本生成模型,$D可以测试G生成的数据是否合法。首先,微调的$D模式在这一过程之前被用作大脑的知识基础。然后,用$G美元模型生成的文本作为确定文本是否合法的投入。最后,$G$G美元根据$D的输出进行微调调整。这种对抗性能过程就像在某种前期的模型中自我调整大脑的某个部分,包括前期的版本。当我们的新版本应用时,要通过某种前期的文本学习一些新的文本。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2021年6月15日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员