Beyond planarity concepts (prominent examples include k-planarity or fan-planarity) apply certain restrictions on the allowed patterns of crossings in drawings. It is natural to ask, how much the number of crossings may increase over the traditional (unrestricted) crossing number. Previous approaches to bound such ratios, e.g. [arXiv:1908.03153, arXiv:2105.12452], require very specialized constructions and arguments for each considered beyond planarity concept, and mostly only yield asymptotically non-tight bounds. We propose a very general proof framework that allows us to obtain asymptotically tight bounds, and where the concept-specific parts of the proof typically boil down to a couple of lines. We show the strength of our approach by giving improved or first bounds for several beyond planarity concepts.
翻译:暂无翻译