In this paper, we study nonparametric estimation of instrumental variable (IV) regressions. Recently, many flexible machine learning methods have been developed for instrumental variable estimation. However, these methods have at least one of the following limitations: (1) restricting the IV regression to be uniquely identified; (2) only obtaining estimation error rates in terms of pseudometrics (\emph{e.g.,} projected norm) rather than valid metrics (\emph{e.g.,} $L_2$ norm); or (3) imposing the so-called closedness condition that requires a certain conditional expectation operator to be sufficiently smooth. In this paper, we present the first method and analysis that can avoid all three limitations, while still permitting general function approximation. Specifically, we propose a new penalized minimax estimator that can converge to a fixed IV solution even when there are multiple solutions, and we derive a strong $L_2$ error rate for our estimator under lax conditions. Notably, this guarantee only needs a widely-used source condition and realizability assumptions, but not the so-called closedness condition. We argue that the source condition and the closedness condition are inherently conflicting, so relaxing the latter significantly improves upon the existing literature that requires both conditions. Our estimator can achieve this improvement because it builds on a novel formulation of the IV estimation problem as a constrained optimization problem.
翻译:在本文中,我们研究的是工具变量(IV)回归的非参数估计;最近,为工具变量(IV)估算制定了许多灵活的机器学习方法,但这种方法至少具有以下限制之一:(1) 限制四级回归,以单独确定;(2) 仅从伪度(emph{例如,}预测规范)获得估计误差率,而不是有效的指标(emph{例如,美元=2美元规范);或(3) 强制实施所谓的封闭性条件,要求某个有条件的预期操作者足够顺利。在本文件中,我们提出第一种方法和分析,可以避免所有三种限制,同时仍然允许一般功能近似。具体地说,我们提议一个新的受处罚的微型估算值,即使有多种解决办法,也能够与固定的四级解决方案趋同,我们为我们的估测标准(例如,美元=2美元=2美元规范);或(3) 强制实施所谓的封闭性条件,要求某个有条件的运行者能够充分顺畅。我们提出的第一种方法和分析方法可以避免所有三种限制,同时仍然允许一般功能接近。具体地说,我们提议一个新的受罚的微型估测算,即使存在多种解决办法,但我们的定了一种自相冲突地要求改进目前的压条件。