Current approaches to multi-agent cooperation rely heavily on centralized mechanisms or explicit communication protocols to ensure convergence. This paper studies the problem of distributed multi-agent learning without resorting to centralized components or explicit communication. It examines the use of distribution matching to facilitate the coordination of independent agents. In the proposed scheme, each agent independently minimizes the distribution mismatch to the corresponding component of a target visitation distribution. The theoretical analysis shows that under certain conditions, each agent minimizing its individual distribution mismatch allows the convergence to the joint policy that generated the target distribution. Further, if the target distribution is from a joint policy that optimizes a cooperative task, the optimal policy for a combination of this task reward and the distribution matching reward is the same joint policy. This insight is used to formulate a practical algorithm (DM$^2$), in which each individual agent matches a target distribution derived from concurrently sampled trajectories from a joint expert policy. Experimental validation on the StarCraft domain shows that combining (1) a task reward, and (2) a distribution matching reward for expert demonstrations for the same task, allows agents to outperform a naive distributed baseline. Additional experiments probe the conditions under which expert demonstrations need to be sampled to obtain the learning benefits.
翻译:多代理人合作的现行办法在很大程度上依赖于集中机制或明确的通信协议,以确保趋同。本文件研究分布式多代理人学习的问题,而不采用集中部分或明确通信。它研究分配式多代理人学习的问题,审查分配匹配的使用,以便利独立代理人的协调。在拟议的办法中,每个代理人独立地尽量减少分配与目标访问分布相应部分不匹配的情况。理论分析表明,在某些条件下,每个代理人尽量减少其个别分配不匹配的情况,就能够与产生目标分布的联合政策取得一致。此外,如果目标分配来自一项联合政策,该联合政策优化了合作任务、任务奖励和分配匹配奖励相结合的最佳政策是相同的联合政策。这种深入了解用于制定实用的算法(DM$2美元),其中每个代理人都与从联合专家政策同时采样的轨迹中获得的目标分配相匹配。 StarCraft 域的实验性鉴定表明,(1) 任务奖励,以及(2) 同一任务的专家示范的分发相匹配奖励,使代理人能够超越一个天分配的基线。其他实验用来调查专家示威需要获得学习利益的条件。</s>