This paper surveys the analysis of parametric Markov models whose transitions are labelled with functions over a finite set of parameters. These models are symbolic representations of uncountable many concrete probabilistic models, each obtained by instantiating the parameters. We consider various analysis problems for a given logical specification $\varphi$: do all parameter instantiations within a given region of parameter values satisfy $\varphi$?, which instantiations satisfy $\varphi$ and which ones do not?, and how can all such instantiations be characterised, either exactly or approximately? We address theoretical complexity results and describe the main ideas underlying state-of-the-art algorithms that established an impressive leap over the last decade enabling the fully automated analysis of models with millions of states and thousands of parameters.
翻译:本文调查了对参数参数模型的分析,这些参数的过渡标记为具有一定参数功能的参数。 这些模型象征了无法计算的许多具体概率模型,每个模型都是通过即时参数获得的。 我们考虑了特定逻辑规格的各种分析问题 $\ varphie $: 参数值区域内的所有参数即时计算是否都满足 $\ varphie $? 参数值区域内的所有参数即时计算是否满足 $ rvorphie? 即时计算满足 $ $ 和 $ 和 $? 如何对所有这些即时数据进行精确或大致的定性? 我们探讨理论的复杂性结果,并描述在过去十年中形成令人印象深刻的飞跃的先进算法背后的主要想法,使得能够以数百万州和数千个参数对模型进行全面自动分析。