This paper presents a novel model-free method for humanoid-robot quasi-static movement control. Traditional model-based methods often require precise robot model parameters. Additionally, existing learning-based frameworks often train the policy in simulation environments, thereby indirectly relying on a model. In contrast, we propose a proprioceptive framework based only on sensory outputs. It does not require prior knowledge of a robot's kinematic model or inertial parameters. Our method consists of three steps: 1. Planning different pairs of center of pressure (CoP) and foot position objectives within a single cycle. 2. Searching around the current configuration by slightly moving the robot's leg joints back and forth while recording the sensor measurements of its CoP and foot positions. 3. Updating the robot motion with an optimization algorithm until all objectives are achieved. We demonstrate our approach on a NAO humanoid robot platform. Experiment results show that it can successfully generate stable robot motions.
翻译:本文介绍了一种新型的无型人机机器人准静态移动控制模式。 传统的模型方法通常要求精确的机器人模型参数。 此外, 现有的学习框架往往在模拟环境中对政策进行培训, 从而间接依赖模型。 相反, 我们提议了一个仅以感官输出为主的自发性框架。 它并不要求事先了解机器人的运动模型或惯性参数。 我们的方法由三个步骤组成: 1. 在单一周期内规划不同的压力中心(CoP)和脚位目标。 2. 通过稍微移动机器人腿部的接合点和脚部位置的传感器测量,来回搜索当前的配置。 3. 在达到所有目标之前,我们用优化算法更新机器人运动。 我们在NAO型机器人平台上展示了我们的方法。 实验结果显示,它能够成功地产生稳定的机器人运动。</s>