Image segmentation is a common and challenging task in autonomous driving. Availability of sufficient pixel-level annotations for the training data is a hurdle. Active learning helps learning from small amounts of data by suggesting the most promising samples for labeling. In this work, we propose a new pool-based method for active learning, which proposes promising patches extracted from full image, in each acquisition step. The problem is framed in an exploration-exploitation framework by combining an embedding based on Uniform Manifold Approximation to model representativeness with entropy as uncertainty measure to model informativeness. We applied our proposed method to the autonomous driving datasets CamVid and Cityscapes and performed a quantitative comparison with state-of-the-art baselines. We find that our active learning method achieves better performance compared to previous methods.
翻译:在自主驱动过程中,图像分割是一项常见且具有挑战性的任务。 培训数据有足够的像素级说明是一个障碍。 积极学习通过提出最有希望的标签样本,有助于从少量数据中学习。 在这项工作中,我们提出了一种新的基于集合的主动学习方法,在每一获取步骤中从完整图像中提取有希望的补丁。 这个问题在探索-开发框架中被设计成一个基于统一工作服的嵌入式,作为模型的不确定性衡量尺度,并具有模型的代表性,作为模型信息性。 我们在自动驱动数据集CamVid和城市景象中采用了我们建议的方法,并与最新基线进行了定量比较。 我们发现,与以往方法相比,我们的积极学习方法取得了更好的业绩。