In this work, we initiate the study of one-round active learning, which aims to select a subset of unlabeled data points that achieve the highest model performance after being labeled with only the information from initially labeled data points. The challenge of directly applying existing data selection criteria to the one-round setting is that they are not indicative of model performance when available labeled data is limited. We address the challenge by explicitly modeling the dependence of model performance on the dataset. Specifically, we propose DULO, a data-driven framework for one-round active learning, wherein we learn a model to predict the model performance for a given dataset and then leverage this model to guide the selection of unlabeled data. Our results demonstrate that DULO leads to the state-of-the-art performance on various active learning benchmarks in the one-round setting.


翻译:在这项工作中,我们开始研究一回合积极学习,目的是选择一组未贴标签的数据点,这些未贴标签的数据点在仅用最初贴标签的数据点提供的信息贴上标签后达到最高模型性能。直接将现有数据选择标准应用于一回合环境的挑战在于,当现有标签数据有限时,这些标准并不是示范性业绩的标志。我们通过明确将模型性能依赖数据集作为模型来应对这一挑战。具体地说,我们提议了DULO,这是一个以数据驱动的一回合积极学习框架,我们学习了一个模型,用来预测某一数据集的模型性能,然后利用这一模型指导选择未贴标签数据。我们的结果表明,DULO在一回合环境中导致各种积极学习基准的最新业绩。

0
下载
关闭预览

相关内容

【经典书】主动学习理论,226页pdf,Theory of Active Learning
专知会员服务
125+阅读 · 2021年7月14日
首篇「课程学习(Curriculum Learning)」2021综述论文
专知会员服务
49+阅读 · 2021年1月31日
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
7+阅读 · 2020年10月9日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
9+阅读 · 2019年4月19日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
6+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
【经典书】主动学习理论,226页pdf,Theory of Active Learning
专知会员服务
125+阅读 · 2021年7月14日
首篇「课程学习(Curriculum Learning)」2021综述论文
专知会员服务
49+阅读 · 2021年1月31日
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
10+阅读 · 2021年3月30日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
7+阅读 · 2020年10月9日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
9+阅读 · 2019年4月19日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
6+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2016年2月24日
Top
微信扫码咨询专知VIP会员