We propose a novel approach to disentangle the generative factors of variation underlying a given set of observations. Our method builds upon the idea that the (unknown) low-dimensional manifold underlying the data space can be explicitly modeled as a product of submanifolds. This gives rise to a new definition of disentanglement, and to a novel weakly-supervised algorithm for recovering the unknown explanatory factors behind the data. At training time, our algorithm only requires pairs of non i.i.d. data samples whose elements share at least one, possibly multidimensional, generative factor of variation. We require no knowledge on the nature of these transformations, and do not make any limiting assumption on the properties of each subspace. Our approach is easy to implement, and can be successfully applied to different kinds of data (from images to 3D surfaces) undergoing arbitrary transformations. In addition to standard synthetic benchmarks, we showcase our method in challenging real-world applications, where we compare favorably with the state of the art.
翻译:我们建议一种新颖的方法来解析某组观测背后的变异变异的基因因素。 我们的方法基于这样的理念,即数据空间背后的(未知的)低维元体可以被明确模拟为子元体的产物。 这就产生了解动的新定义,并产生了一种新颖的薄弱监督的算法,用于恢复数据背后的未知解释因素。 在培训时间,我们的算法只要求具有至少一个(可能是多层面的)变异因素的非i. id数据样本。 我们不需要了解这些变异的性质,也不对每个子空间的特性作任何限制的假设。 我们的方法很容易执行,并且可以成功地应用于正在发生任意变异的不同种类的数据(从图像到3D表面 ) 。 除了标准的合成基准外,我们展示了我们挑战现实世界应用的方法,我们在那里与艺术状况相比是有利的。