Unsupervised person re-identification is a challenging and promising task in computer vision. Nowadays unsupervised person re-identification methods have achieved great progress by training with pseudo labels. However, how to purify feature and label noise is less explicitly studied in the unsupervised manner. To purify the feature, we take into account two types of additional features from different local views to enrich the feature representation. The proposed multi-view features are carefully integrated into our cluster contrast learning to leverage more discriminative cues that the global feature easily ignored and biased. To purify the label noise, we propose to take advantage of the knowledge of teacher model in an offline scheme. Specifically, we first train a teacher model from noisy pseudo labels, and then use the teacher model to guide the learning of our student model. In our setting, the student model could converge fast with the supervision of the teacher model thus reduce the interference of noisy labels as the teacher model greatly suffered. After carefully handling the noise and bias in the feature learning, our purification modules are proven to be very effective for unsupervised person re-identification. Extensive experiments on three popular person re-identification datasets demonstrate the superiority of our method. Especially, our approach achieves a state-of-the-art accuracy 85.8\% @mAP and 94.5\% @Rank-1 on the challenging Market-1501 benchmark with ResNet-50 under the fully unsupervised setting. The code will be released.
翻译:不受监督的人重新定位是计算机愿景中一项富有挑战性和有希望的任务。 如今,不受监督的人重新定位方法通过使用假标签培训取得了巨大的进步。 然而, 如何清洁特征和标签噪音的问题没有以不受监督的方式进行明确研究。 为了清洁该特征, 我们考虑到来自不同地方观点的两种额外特征, 以丰富特征代表形式。 拟议的多视图特征被仔细地纳入到我们的分组对比学习中, 以利用全球特征容易被忽视和偏差的更具有歧视性的提示。 为了净化标签噪音, 我们提议在离线计划中利用教师模型的知识。 具体地说, 我们首先从噪音假标签中培训教师模型, 然后使用教师模型指导学生模型的学习。 在我们的设置中, 学生模型可以与教师模型的监督迅速结合, 从而减少噪音标签的干扰, 正如教师模型一样受到极大伤害。 在认真处理特征学习中的噪音和偏见之后, 我们的净化模块被证明非常有效, 未经监督的人重新定位。 在三个受欢迎的人重新定位的人重新定位的数据模型中进行广泛的实验, 85- AP 的精确度 方法将实现我们 85- 的精确度 。