Personalized PageRank (PPR) is a fundamental tool in unsupervised learning of graph representations such as node ranking, labeling, and graph embedding. However, while data privacy is one of the most important recent concerns, existing PPR algorithms are not designed to protect user privacy. PPR is highly sensitive to the input graph edges: the difference of only one edge may cause a big change in the PPR vector, potentially leaking private user data. In this work, we propose an algorithm which outputs an approximate PPR and has provably bounded sensitivity to input edges. In addition, we prove that our algorithm achieves similar accuracy to non-private algorithms when the input graph has large degrees. Our sensitivity-bounded PPR directly implies private algorithms for several tools of graph learning, such as, differentially private (DP) PPR ranking, DP node classification, and DP node embedding. To complement our theoretical analysis, we also empirically verify the practical performances of our algorithms.
翻译:个人化 PageRank (PPR) 是不受监督地学习节点排序、标签和图形嵌入等图形表达方式的基本工具。 然而,虽然数据隐私是最近最重要的关注事项之一,但现有的 PPR算法并不是为了保护用户隐私而设计的。 PPR对输入图边缘非常敏感:只有一个边缘的差别可能会导致 PPR矢量的重大变化,从而有可能泄漏私人用户数据。 在这项工作中,我们提出了一个算法,其中输出一个大致的 PPR,并且对输入边缘具有可辨别的约束性敏感性。 此外,我们还证明我们的算法在输入图具有很大程度时,实现了与非私人算法相似的精确性。 我们的敏感度PPR直接意味着对若干图形学习工具的私人算法,例如,有差别的私人(DP) PPR 排序、 DP 节点分类和 DP 节点嵌入。 为了补充我们的理论分析,我们还从经验上验证了我们算法的实际表现。