Publishing graph statistics under node differential privacy has attracted much attention since it provides a stronger privacy guarantee than edge differential privacy. Existing works related to node differential privacy assume a trusted data curator who holds the whole graph. However, in many applications, a trusted curator is usually not available due to privacy and security issues. In this paper, for the first time, we investigate the problem of publishing the graph degree distribution under Node Local Differential privacy (Node-LDP), which does not rely on a trusted server. We propose an algorithm to publish the degree distribution with Node-LDP by exploring how to select the optimal graph projection parameter and how to execute the local graph projection. Specifically, we propose a Crypto-assisted local projection method that combines LDP and cryptographic primitives, achieving higher accuracy than our baseline PureLDP local projection method. On the other hand, we improve our baseline Node-level parameter selection by proposing an Edge-level parameter selection that preserves more neighboring information and provides better utility. Finally, extensive experiments on real-world graphs show that Edge-level local projection provides higher accuracy than Node-level local projection, and Crypto-assisted parameter selection owns the better utility than PureLDP parameter selection, improving by up to 79.8% and 57.2% respectively.
翻译:不同隐私节点下的出版图表统计吸引了许多关注,因为它提供了比边缘差异隐私更强的隐私保障。 与节点差异隐私有关的现有作品假定了拥有整张图的可信任数据管理员。 但是,在许多应用程序中,由于隐私和安全问题,通常无法提供可信任的馆长。 在本文中,我们首次调查了在Node 本地差异隐私节(Node-LDP)下公布图表学位分布的问题,因为不依赖于信任的服务器。 我们提议了一个算法,以发布与节点- LDP的学位分布。 我们通过探索如何选择最佳图形预测参数和如何执行本地图形预测。 具体地说,我们提议了一种加密辅助的本地预测方法,该方法将LDP和加密原始图像结合起来,其准确性高于我们的基线PureLDP本地预测方法。 另一方面,我们改进了我们基线的节点参数选择,为此提议了一个埃格级参数选择,该参数保存了更多的相邻信息,并提供了更好的效用。 最后,通过对现实世界图表的广泛实验显示, Edge 级别的本地预测提供了比 Node-plage lifor proforational press press privational press views real views view dududududududududustration.