The proliferation of real-time applications has motivated extensive research on analyzing and optimizing data freshness in the context of \textit{age of information}. However, classical frameworks of privacy (e.g., differential privacy (DP)) have overlooked the impact of data freshness on privacy guarantees, which may lead to unnecessary accuracy loss when trying to achieve meaningful privacy guarantees in time-varying databases. In this work, we introduce \textit{age-dependent DP}, taking into account the underlying stochastic nature of a time-varying database. In this new framework, we establish a connection between classical DP and age-dependent DP, based on which we characterize the impact of data staleness and temporal correlation on privacy guarantees. Our characterization demonstrates that \textit{aging}, i.e., using stale data inputs and/or postponing the release of outputs, can be a new strategy to protect data privacy in addition to noise injection in the traditional DP framework. Furthermore, to generalize our results to a multi-query scenario, we present a sequential composition result for age-dependent DP under any publishing and aging policies. We then characterize the optimal tradeoffs between privacy risk and utility and show how this can be achieved. Finally, case studies show that to achieve a target of an arbitrarily small privacy risk in a single-query case, combing aging and noise injection only leads to a bounded accuracy loss, whereas using noise injection only (as in the benchmark case of DP) will lead to an unbounded accuracy loss.


翻译:实时应用程序的激增促使人们广泛研究如何分析并优化在\textit{gage 信息中的数据新鲜度。然而,传统的隐私框架(例如,差异隐私(DP))忽视了数据新鲜度对隐私保障的影响,这可能在试图在时间变化的数据库中实现有意义的隐私保障时造成不必要的准确性损失。在这项工作中,我们引入了\textit{age-faith DP},同时考虑到时间变化数据库的基本随机性质。在这一新框架内,我们建立了传统的DP和年龄依赖DP之间的联系,我们根据这种联系来描述数据淡化和时间相关性对隐私保障的影响。我们的特征特征表明,在试图在时间变化的数据库中实现有意义的隐私保障时,可能会造成不必要的准确性损失。 在传统的DP框架中,我们引入了一种新的战略,除了噪音注入外,还要将我们的结果概括为多孔式的情景,我们在任何出版和正在变化的DP下对年龄依赖的DP形成一种相近似的构成结果。 我们的特征表明,使用简洁性数据输入的精确性,然后在单一的保密性案例研究中展示一种最佳的保密风险。我们最后能够展示一种最佳的保密性,在任何出版和正在实现的保密性案例中实现的最佳交易风险。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
162+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员