The proliferation of real-time applications has motivated extensive research on analyzing and optimizing data freshness in the context of \textit{age of information}. However, classical frameworks of privacy (e.g., differential privacy (DP)) have overlooked the impact of data freshness on privacy guarantees, which may lead to unnecessary accuracy loss when trying to achieve meaningful privacy guarantees in time-varying databases. In this work, we introduce \textit{age-dependent DP}, taking into account the underlying stochastic nature of a time-varying database. In this new framework, we establish a connection between classical DP and age-dependent DP, based on which we characterize the impact of data staleness and temporal correlation on privacy guarantees. Our characterization demonstrates that \textit{aging}, i.e., using stale data inputs and/or postponing the release of outputs, can be a new strategy to protect data privacy in addition to noise injection in the traditional DP framework. Furthermore, to generalize our results to a multi-query scenario, we present a sequential composition result for age-dependent DP under any publishing and aging policies. We then characterize the optimal tradeoffs between privacy risk and utility and show how this can be achieved. Finally, case studies show that to achieve a target of an arbitrarily small privacy risk in a single-query case, combing aging and noise injection only leads to a bounded accuracy loss, whereas using noise injection only (as in the benchmark case of DP) will lead to an unbounded accuracy loss.
翻译:实时应用程序的激增促使人们广泛研究如何分析并优化在\textit{gage 信息中的数据新鲜度。然而,传统的隐私框架(例如,差异隐私(DP))忽视了数据新鲜度对隐私保障的影响,这可能在试图在时间变化的数据库中实现有意义的隐私保障时造成不必要的准确性损失。在这项工作中,我们引入了\textit{age-faith DP},同时考虑到时间变化数据库的基本随机性质。在这一新框架内,我们建立了传统的DP和年龄依赖DP之间的联系,我们根据这种联系来描述数据淡化和时间相关性对隐私保障的影响。我们的特征特征表明,在试图在时间变化的数据库中实现有意义的隐私保障时,可能会造成不必要的准确性损失。 在传统的DP框架中,我们引入了一种新的战略,除了噪音注入外,还要将我们的结果概括为多孔式的情景,我们在任何出版和正在变化的DP下对年龄依赖的DP形成一种相近似的构成结果。 我们的特征表明,使用简洁性数据输入的精确性,然后在单一的保密性案例研究中展示一种最佳的保密风险。我们最后能够展示一种最佳的保密性,在任何出版和正在实现的保密性案例中实现的最佳交易风险。