The brains of all bilaterally symmetric animals on Earth are divided into left and right hemispheres. The anatomy and functionality of the hemispheres have a large degree of overlap, but there are asymmetries and they specialize to possess different attributes. Several studies have used computational models to mimic hemispheric asymmetries with a focus on reproducing human data on semantic and visual processing tasks. In this study, we aimed to understand how dual hemispheres could interact in a given task. We propose a bilateral artificial neural network that imitates a lateralization observed in nature: that the left hemisphere specializes in specificity and the right in generalities. We used two ResNet-9 convolutional neural networks with different training objectives and tested it on an image classification task. Our analysis found that the hemispheres represent complementary features that are exploited by a network head which implements a type of weighted attention. The bilateral architecture outperformed a range of baselines of similar representational capacity that don't exploit differential specialization. The results demonstrate the efficacy of bilateralism, contribute to an understanding of bilateralism in biological brains and the architecture serves as an inductive bias when designing new AI systems.
翻译:地球上所有双边对称动物的大脑被分为左半球和右半球。 各个半球的解剖和功能存在很大程度的重叠, 但有不对称, 它们专门拥有不同的属性。 一些研究使用计算模型模拟半球的不对称, 重点是复制关于语义和视觉处理任务的人类数据。 在本研究中, 我们的目标是了解两半球如何在特定任务中相互作用。 我们建议建立一个双边人工神经网络, 模仿在自然中观察到的对称性: 左半球在特殊性和右侧专门化。 我们使用两个ResNet- 9 脉动神经网络, 具有不同的培训目标, 并在图像分类任务中测试这些网络。 我们的分析发现, 半球是互补的特征, 由执行某种加权关注的网络头加以利用。 双边结构超越了一系列类似代表性能力的基线, 而没有利用差别化的专业化。 其结果显示双边主义的功效, 有助于理解生物大脑和建筑结构中的双边主义, 在设计新的系统时, 是一种直截面的偏见。