This paper studies the notion of age in task-oriented communications that aims to execute a task at a receiver utilizing the data at its transmitter. The transmitter-receiver operations are modeled as an encoder-decoder pair that is jointly trained while considering channel effects. The encoder converts data samples into feature vectors of small dimension and transmits them with a small number of channel uses thereby reducing the number of transmissions and latency. Instead of reconstructing input samples, the decoder performs a task, e.g., classification, on the received signals. Applying different deep neural networks of encoder-decoder pairs on MNIST and CIFAR-10 image datasets, the classifier accuracy is shown to increase with the number of channel uses at the expense of longer service time. The peak age of task information (PAoTI) is introduced to analyze this accuracy-latency tradeoff when the age grows unless a received signal is classified correctly. By incorporating channel and traffic effects, design guidelines are obtained for task-oriented communications by characterizing how the PAoTI first decreases and then increases with the number of channel uses. A dynamic update mechanism is presented to adapt the number of channel uses to channel and traffic conditions, and reduce the PAoTI in task-oriented communications.


翻译:本文研究任务导向通信的年龄概念,目的是利用发报机的数据在接收器上执行任务。发报机接收器操作模拟成一个在考虑频道效果时经过联合培训的编码器-解码器对配对。编码器将数据样品转换成小尺寸的特性矢量,并以少量频道用途传送这些数据样品,从而减少传输和潜伏的数量。除重建输入样本外,脱码器对收到的信号进行分类等任务。在MNIST和CIFAR-10图像数据集中应用不同的编码器-脱码对子深神经网络,分类器的精确度随着频道使用次数的增加而增加,而牺牲了更长的服务时间。任务信息的高峰期(PAoTI)是分析年龄增长时的准确性拉差交换量,除非对收到的信号进行正确分类,否则对收到的信号进行分类,从而对收到的信号进行任务导向通信进行设计准则。通过描述PAoTI首次下降和随后随着频道使用量的增加而使频道的使用量增加。ATI系统使用动态更新机制,对频道的使用量进行了调整。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
19+阅读 · 2022年7月29日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员