Anglicisms are a challenge in German speech recognition. Due to their irregular pronunciation compared to native German words, automatically generated pronunciation dictionaries often include faulty phoneme sequences for Anglicisms. In this work, we propose a multitask sequence-to-sequence approach for grapheme-to-phoneme conversion to improve the phonetization of Anglicisms. We extended a grapheme-to-phoneme model with a classifier to distinguish Anglicisms from native German words. With this approach, the model learns to generate pronunciations differently depending on the classification result. We used our model to create supplementary Anglicism pronunciation dictionaries that are added to an existing German speech recognition model. Tested on a dedicated Anglicism evaluation set, we improved the recognition of Anglicisms compared to a baseline model, reducing the word error rate by 1 % and the Anglicism error rate by 3 %. We show that multitask learning can help solving the challenge of Anglicisms in German speech recognition.
翻译:语言识别是德国语言识别中的一项挑战。 与德国本地语言相比,德国语言的发音不规则, 自动生成的发音词典往往包括安眠症有缺陷的发音序列。 在这项工作中, 我们提议了一种多任务序列到顺序的语法转换方法, 以改善安眠症的语音化。 我们扩展了一个配有分级器的图象- 电话模式, 以区分安眠症和德国本地语言。 通过这种方法, 模型学会根据分类结果产生不同的发音。 我们使用我们的模型来创建补充的安眠症发音词典, 添加到现有的德国语音识别模型中。 在专门的安眠症评估组上测试了我们对安眠症的承认, 与一个基线模型相比, 我们提高了对安眠症的承认, 将单词错误率降低了1%, 和安眠症错误率降低了3%。 我们显示, 多任务学习有助于解决德国语音识别中的安眠症的挑战。