In this paper, for the Stokes eigenvalue problem in $d$-dimensional case $(d=2,3)$, we present an a posteriori error estimate of residual type of the mixed discontinuous Galerkin finite element method using $P_{k}-P_{k-1}$ element $(k\geq 1)$. We give the a posteriori error estimators for approximate eigenpairs, prove their reliability and efficiency for eigenfunctions, and also analyze their reliability for eigenvalues. We implement adaptive calculation, and the numerical results confirm our theoretical predictions and show that our method can achieve the optimal convergence order $O(dof^{-2k/d})$.
翻译:在本文中,对于Stokes egenvalue 问题,用美元(d=2,3美元)的维元案例,我们用美元(k\geq)美元(美元)对混合不连续加列尔金定值元素法的剩余类型提出了事后误差估计。我们给出了约(k\geq)美元元素的后端误差估计值,证明了其可靠性和效率,并分析了其是否可靠。我们实施了适应性计算,并且数字结果证实了我们的理论预测,并表明我们的方法可以达到最佳汇合顺序$(dof)-2k/d}美元。