The paper proposes a decoupled numerical scheme of the time-dependent Ginzburg-Landau equations under temporal gauge. For the order parameter and the magnetic potential, the discrete scheme adopts the second type Ned${\rm \acute{e}}$lec element and the linear element for spatial discretization, respectively, and a fully linearized backward Euler method and the first order exponential time differencing method for time discretization, respectively. The maximum bound principle of the order parameter and the energy dissipation law in the discrete sense are proved for this finite element-based scheme. This allows the application of the adaptive time stepping method which can significantly speed up long-time simulations compared to existing numerical schemes, especially for superconductors with complicated shapes. The error estimate is rigorously established in the fully discrete sense. Numerical examples verify the theoretical results of the proposed scheme and demonstrate the vortex motions of superconductors in an external magnetic field.
翻译:本文在时间仪表下提出了一个基于时间的 Ginzburg- Landau 等离散数字公式。 对于定序参数和磁潜能,离散方案分别采用第二类型 Ned$\rm \ aute{e ⁇ $lec 元素和空间离散线元素, 以及完全线性后向电动法和时间离散的第一顺序指数时间差异法。 这个以元素为基础的有限方案证明了顺序参数的最大约束原理和离散感能量消散法。 这使得能够应用适应性时间跳动方法, 与现有的数字方案相比, 能够大大加快长期模拟的速度, 特别是对于形状复杂的超导体。 错误估计在完全离散的意义上是严格确定的。 数字示例可以核实拟议办法的理论结果, 并演示超导体在外部磁场的旋流。