A difficulty in MSE estimation occurs because we do not specify a full distribution for the survey weights. This obfuscates the use of fully parametric bootstrap procedures. To overcome this challenge, we develop a novel MSE estimator. We estimate the leading term in the MSE, which is the MSE of the best predictor (constructed with the true parameters), using the same simulated samples used to construct the basic predictor. We then exploit the asymptotic normal distribution of the parameter estimators to estimate the second term in the MSE, which reflects variability in the estimated parameters. We incorporate a correction for the bias of the estimator of the leading term without the use of computationally intensive double-bootstrap procedures. We further develop calibrated prediction intervals that rely less on normal theory than standard prediction intervals. We empirically demonstrate the validity of the proposed procedures through extensive simulation studies. We apply the methods to predict several functions of sheet and rill erosion for Iowa counties using data from a complex agricultural survey.
翻译:MSE 估算出现困难是因为我们没有具体说明测量重量的完全分布。 这模糊了完全参数性靴子捕捉程序的使用。 为了克服这一挑战, 我们开发了一个新的MSE测算器。 我们估计了MSE中的主要术语, 即最佳预测器( 与真实参数形成) 的MSE 的模型, 使用同样的模拟样本来构建基本预测器。 然后, 我们利用参数估计器的无症状性正常分布来估算MSE的第二个术语, 这反映了估计参数的变异性。 我们引入了对领先术语估计器的偏差的校正, 而不使用计算密集的双螺杆捕捉程序。 我们进一步开发了比标准预测间隔更不依赖正常理论的校准预测间隔。 我们通过广泛的模拟研究, 实验性地证明拟议程序的有效性。 我们使用复杂的农业调查数据来预测伊奥瓦各县的表数函数和极量侵蚀。