The stochastic gradient descent (SGD) algorithm is widely used for parameter estimation, especially for huge data sets and online learning. While this recursive algorithm is popular for computation and memory efficiency, quantifying variability and randomness of the solutions has been rarely studied. This paper aims at conducting statistical inference of SGD-based estimates in an online setting. In particular, we propose a fully online estimator for the covariance matrix of averaged SGD iterates (ASGD) only using the iterates from SGD. We formally establish our online estimator's consistency and show that the convergence rate is comparable to offline counterparts. Based on the classic asymptotic normality results of ASGD, we construct asymptotically valid confidence intervals for model parameters. Upon receiving new observations, we can quickly update the covariance matrix estimate and the confidence intervals. This approach fits in an online setting and takes full advantage of SGD: efficiency in computation and memory.


翻译:参数估算广泛使用随机梯度下移算法(SGD), 特别是大型数据集和在线学习。 虽然这种递归算法对计算和内存效率很受欢迎, 但很少研究这些解决方案的可变性和随机性。 本文旨在对在线环境中基于 SGD 的估计数进行统计推论。 特别是, 我们提议只使用 SGD 的迭代词, 才能对平均 SGD 代数( ASGD) 的共变量矩阵进行完全在线估算。 我们正式建立了我们的在线估测器的一致性, 并显示趋同率与离线对应方相当。 根据ASGD 的典型的非现常态常态常态结果, 我们为模型参数构建了无现有效信任间隔。 收到新观察后, 我们就可以快速更新常数矩阵估计和信任间隔。 这种方法符合在线设置, 并充分利用 SGD: 计算和记忆的效率 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年8月24日
Arxiv
0+阅读 · 2021年8月20日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员