The variance of noise plays an important role in many change-point detection procedures and the associated inferences. Most commonly used variance estimators require strong assumptions on the true mean structure or normality of the error distribution, which may not hold in applications. More importantly, the qualities of these estimators have not been discussed systematically in the literature. In this paper, we introduce a framework of equivariant variance estimation for multiple change-point models. In particular, we characterize the set of all equivariant unbiased quadratic variance estimators for a family of change-point model classes, and develop a minimax theory for such estimators.
翻译:噪音差异在许多变化点检测程序和相关推论中起着重要作用。最常见的差异估计因素要求对误差分布的真正平均结构或正常性作出强烈的假设,而误差分布在应用中可能无法维持。更重要的是,文献中没有系统地讨论这些估计因素的品质。在本文件中,我们为多个变化点模型引入了一个等同差异估计框架。特别是,我们为一组变化点模型类别组别的所有等同的、不带偏见的二次差异估计因素作了定性,并为这些估计因素组别制定了一个小型理论。