Recent advances in the field of meta-learning have tackled domains consisting of large numbers of small ("few-shot") supervised learning tasks. Meta-learning algorithms must be able to rapidly adapt to any individual few-shot task, fitting to a small support set within a task and using it to predict the labels of the task's query set. This problem setting can be extended to the Bayesian context, wherein rather than predicting a single label for each query data point, a model predicts a distribution of labels capturing its uncertainty. Successful methods in this domain include Bayesian ensembling of MAML-based models, Bayesian neural networks, and Gaussian processes with learned deep kernel and mean functions. While Gaussian processes have a robust Bayesian interpretation in the meta-learning context, they do not naturally model non-Gaussian predictive posteriors for expressing uncertainty. In this paper, we design a theoretically principled method, VMGP, extending Gaussian-process-based meta-learning to allow for high-quality, arbitrary non-Gaussian uncertainty predictions. On benchmark environments with complex non-smooth or discontinuous structure, we find our VMGP method performs significantly better than existing Bayesian meta-learning baselines.


翻译:元学习领域最近的进展已经解决了由大量小型(“few-shot”)监管的学习任务组成的领域。元学习算法必须能够迅速适应任何单个的微小任务,适应任务范围内的小型支助,并用来预测任务查询组的标签。这个问题设置可以扩展到巴伊西亚环境,而不必预测每个查询数据点的单一标签,一个模型预测标签的分布,捕捉其不确定性。这一领域的成功方法包括:贝伊西亚人集合以MAML为基础的模型、贝伊西亚神经网络和高萨进程,具有深层内核和中值功能。虽然高萨进程在元学习环境中有强大的贝叶西亚人解释,但它们并不自然地模拟非加萨预测的预测海象来表达不确定性。在本文中,我们设计了一个理论原则方法,即VMGP,扩大高斯-加亚进程元学习的范围,以允许高质、任意的非加萨尼神经网络,以及高萨进程进程进程进程,以及具有深层次和中值功能的过程。虽然高萨进程在元学习环境中有较复杂的基准环境,但更精确地进行不精确的研究。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月15日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
8+阅读 · 2020年10月7日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关VIP内容
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年12月15日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
8+阅读 · 2020年10月7日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Top
微信扫码咨询专知VIP会员