In this paper, we establish the list-decoding capacity theorem for sum-rank metric codes. This theorem implies the list-decodability theorem for random general sum-rank metric codes: Any random general sum-rank metric code with a rate not exceeding the list-decoding capacity is $\left(\rho,O\left(1/\epsilon\right)\right)$-list-decodable with high probability, where $\rho\in\left(0,1\right)$ represents the error fraction and $\epsilon>0$ is referred to as the capacity gap. For random $\mathbb{F}_q$-linear sum-rank metric codes by using the same proof approach we demonstrate that any random $\mathbb{F}_q$-linear sum-rank metric code with a rate not exceeding the list-decoding capacity is $\left(\rho,\exp\left(O\left(1/\epsilon\right)\right)\right)$-list-decodable with high probability, where the list size is exponential at this stage due to the high correlation among codewords in linear codes. To achieve an exponential improvement on the list size, we prove a limited correlation property between sum-rank metric balls and $\mathbb{F}_q$-subspaces. Ultimately, we establish the list-decodability theorem for random $\mathbb{F}_q$-linear sum-rank metric codes: Any random $\mathbb{F}_q$-linear sum-rank metric code with rate not exceeding the list decoding capacity is $\left(\rho, O\left(1/\epsilon\right)\right)$-list-decodable with high probability. For the proof of the list-decodability theorem of random $\mathbb{F}_q$-linear sum-rank metric codes our proof idea is inspired by and aligns with that provided in the works \cite{Gur2010,Din2014,Gur2017} where the authors proved the list-decodability theorems for random $\mathbb{F}_q$-linear Hamming metric codes and random $\mathbb{F}_q$-linear rank metric codes, respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员