Common image-to-image translation methods rely on joint training over data from both source and target domains. This prevents the training process from preserving privacy of domain data (e.g., in a federated setting), and often means that a new model has to be trained for a new pair of domains. We present Dual Diffusion Implicit Bridges (DDIBs), an image translation method based on diffusion models, that circumvents training on domain pairs. Image translation with DDIBs relies on two diffusion models trained independently on each domain, and is a two-step process: DDIBs first obtain latent encodings for source images with the source diffusion model, and then decode such encodings using the target model to construct target images. Both steps are defined via an ODE, thus the process is cycle consistent only up to discretization errors of the ODE solvers. Theoretically, we interpret DDIBs as concatenation of source to latent, and latent to target Schr\"odinger Bridges, a form of entropy-regularized optimal transport, to explain the efficacy of the method. Experimentally, we apply DDIBs on both synthetic and high-resolution image datasets, to demonstrate their utility in a wide variety of translation tasks and their connections to existing optimal transport methods.
翻译:普通图像到图像翻译方法依赖于对源域和目标域的数据进行联合培训。 这使得培训过程无法保护域数据隐私( 例如, 在联合设置中), 并且往往意味着新模式必须针对新一对域进行培训。 我们展示了基于传播模型的双分扩散隐形桥( DDIBs), 这是基于域对对等培训的一种图像翻译方法。 DDIBs的图像翻译依赖两个独立培训的传播模型,这是一个两步过程: DDIBs首先获得源图像与源传播模型的潜在编码,然后使用目标模型解码这些编码以构建目标图像。 我们通过一个 ODE 定义了两个步骤, 因此这一过程的周期只能与 ODE 解码器的离散错误相协调。 从理论上讲, 我们将 DDIBs 解释为源与目标Schr\ 调料桥的配方, 一种形式是加密的最佳运输方式, 解释方法的功效。 实验性地, 我们将其现有多用途DDIB 和高分辨率的合成数据转换方法 。