In this work, we present a new method for 3D face reconstruction from sparse-view RGB images. Unlike previous methods which are built upon 3D morphable models (3DMMs) with limited details, we leverage an implicit representation to encode rich geometric features. Our overall pipeline consists of two major components, including a geometry network, which learns a deformable neural signed distance function (SDF) as the 3D face representation, and a rendering network, which learns to render on-surface points of the neural SDF to match the input images via self-supervised optimization. To handle in-the-wild sparse-view input of the same target with different expressions at test time, we propose residual latent code to effectively expand the shape space of the learned implicit face representation as well as a novel view-switch loss to enforce consistency among different views. Our experimental results on several benchmark datasets demonstrate that our approach outperforms alternative baselines and achieves superior face reconstruction results compared to state-of-the-art methods.
翻译:在这项工作中,我们展示了一种新的3D面部重建方法,它来自微弱的 RGB 图像。与以前建立在3D变形模型(3DMM)上且细节有限的方法不同,我们利用隐含的表示方式来编码丰富的几何特征。我们的整个管道由两个主要组成部分组成,包括几何网络,以3D 面部表示方式学习了变形神经信号的距离功能(SDF),以及转换网络,以学会通过自我监督优化的方式使神经SDF的表面点与输入图像相匹配。为了在试验时用不同的表达方式处理同一目标的微小视图输入,我们提出了剩余隐含代码,以有效扩大所学的隐形面部代表的形状空间,以及执行不同观点之间一致性的新观点转换损失。我们关于几个基准数据集的实验结果表明,我们的方法超越了替代基线,并实现了与最先进的方法相比的优面部重建结果。