This paper addresses a problem called "conditional manifold learning", which aims to learn a low-dimensional manifold embedding of high-dimensional data, conditioning on auxiliary manifold information. This auxiliary manifold information is from controllable or measurable conditions, which are ubiquitous in many science and engineering applications. A broad class of solutions for this problem, conditional multidimensional scaling (including a conditional ISOMAP variant), is proposed. A conditional version of the SMACOF algorithm is introduced to optimize the objective function of conditional multidimensional scaling.
翻译:本文论述一个名为“有条件的多重学习”的问题,其目的是学习以辅助性多重信息为条件的低维多维嵌入高维数据。这一辅助性多重信息来自可控制或可测量的条件,在许多科学和工程应用中,这些条件无处不在。为解决这一问题,提出了一系列广泛的解决办法,即有条件的多层面规模(包括一个有条件的ISOMAP变量),引入了有条件的SMACOF算法版本,以优化有条件的多层面缩放的客观功能。