Learning and synthesizing stabilizing controllers for unknown nonlinear systems is a challenging problem for real-world and industrial applications. Koopman operator theory allow one to analyze nonlinear systems through the lens of linear systems and nonlinear control systems through the lens of bilinear control systems. The key idea of these methods, lies in the transformation of the coordinates of the nonlinear system into the Koopman observables, which are coordinates that allow the representation of the original system (control system) as a higher dimensional linear (bilinear control) system. However, for nonlinear control systems, the bilinear control model obtained by applying Koopman operator based learning methods is not necessarily stabilizable and therefore, the existence of a stabilizing feedback control is not guaranteed which is crucial for many real world applications. Simultaneous identification of these stabilizable Koopman based bilinear control systems as well as the associated Koopman observables is still an open problem. In this paper, we propose a framework to identify and construct these stabilizable bilinear models and its associated observables from data by simultaneously learning a bilinear Koopman embedding for the underlying unknown nonlinear control system as well as a Control Lyapunov Function (CLF) for the Koopman based bilinear model using a learner and falsifier. Our proposed approach thereby provides provable guarantees of global asymptotic stability for the nonlinear control systems with unknown dynamics. Numerical simulations are provided to validate the efficacy of our proposed class of stabilizing feedback controllers for unknown nonlinear systems.
翻译:用于未知非线性系统的学习和合成稳定控制器对于真实世界和工业应用来说是一个具有挑战性的问题。 Koopman操作员理论允许一个人通过线性系统和非线性控制系统的镜头通过双线性控制系统的镜头分析非线性系统和非线性控制器。 这些方法的关键理念在于将非线性系统的坐标转换成Koopman可观测系统,这是允许将原始系统(控制系统)作为高维线性线性系统(直线性控制)的坐标。然而,对于非线性控制系统来说,通过应用Koopman操作者基于的不线性运行反馈方法获得的双线性线性控制模型不一定可以稳定,因此,稳定反馈控制的存在并不是对许多真实世界应用的关键。 这些基于双线性线性系统(控制系统)基于双线性 Kopman 的直线性识别以及相关的 Kooopman 可观测器仍然是一个开放式问题。 我们提议建立一个框架,用以识别和构建这些可稳定的双线性双线性系统模型及其相关的非线性观测器。 通过同时学习基于不透明性软性软性软性系统, 以学习不透明的软性软性软性软性软性控制系统, 我们的软性软性软性软性软性软性软性软性软性软性软性软性软性软性软性软性软性软性软性软性系统提供一种系统。