The Koopman operator is beneficial for analyzing nonlinear and stochastic dynamics; it is linear but infinite-dimensional, and it governs the evolution of observables. The extended dynamic mode decomposition (EDMD) is one of the famous methods in the Koopman operator approach. The EDMD employs a data set of snapshot pairs and a specific dictionary to evaluate an approximation for the Koopman operator, i.e., the Koopman matrix. In this study, we focus on stochastic differential equations, and a method to obtain the Koopman matrix is proposed. The proposed method does not need any data set, which employs the original system equations to evaluate some of the targeted elements of the Koopman matrix. The proposed method comprises combinatorics, an approximation of the resolvent, and extrapolations. Comparisons with the EDMD are performed for a noisy van der Pol system. The proposed method yields reasonable results even in cases wherein the EDMD exhibits a slow convergence behavior.
翻译:Koopman 操作员有利于分析非线性和随机动态; 它是线性但无限的维度, 它制约着可观测到的进化。 扩展的动态模式分解( EDMD) 是Koopman 操作员方法中的著名方法之一。 EDMD 使用一套快照对和专门的词典来评估Koopman 操作员的近似值, 即 Koopman 矩阵。 在这次研究中, 我们侧重于随机分解方程, 并提出了获取 Koopman 矩阵的方法。 拟议的方法不需要任何数据集, 使用原始系统方程式来评估Koopman 矩阵的某些目标元素。 提议的方法包括组合法、 确定点的近似值 和外推法。 与 EDMD 的比较是用来比较振动的van der Pol 系统。 拟议的方法产生合理的结果, 即使 EDMD 显示慢趋同行为 。