We consider the problem of estimating channel fading coefficients (modeled as a correlated Gaussian vector) via Downlink (DL) training and Uplink (UL) feedback in wideband FDD massive MIMO systems. Using rate-distortion theory, we derive optimal bounds on the achievable channel state estimation error in terms of the number of training pilots in DL ($\beta_{tr}$) and feedback dimension in UL ($\beta_{fb}$), with random, spatially isotropic pilots. It is shown that when the number of training pilots exceeds the channel covariance rank ($r$), the optimal rate-distortion feedback strategy achieves an estimation error decay of $\Theta (SNR^{-\alpha})$ in estimating the channel state, where $\alpha = min (\beta_{fb}/r , 1)$ is the so-called quality scaling exponent. We also discuss an "analog" feedback strategy, showing that it can achieve the optimal quality scaling exponent for a wide range of training and feedback dimensions with no channel covariance knowledge and simple signal processing at the user side. Our findings are supported by numerical simulations comparing various strategies in terms of channel state mean squared error and achievable ergodic sum-rate in DL with zero-forcing precoding.
翻译:我们考虑通过宽频捍卫民主力量大型MIMO系统中的Downlink(DL)培训和UPL(UL)反馈来估计频道衰减系数(模拟为相关高斯矢量)的问题。我们使用比率扭曲理论,从可实现的频道状态估计误差中得出最佳界限,即DL($\beta ⁇ tr}$)的培训试点数和UL($\beta ⁇ ff}$)的反馈层面($\beta ⁇ ff}$),随机的、空间的异质实验。我们讨论的是“模拟”反馈战略,表明当培训试点数目超过频道变异等级($$)时,最佳的调速率调整反馈战略在估计频道状态时,将差差差差差值估计为$\theta(SNR ⁇ \\\\\\\\\\alpha}$),而$alpha=m(\beetaff}/r,$, 1)是所谓的质量缩缩缩。我们还讨论“模拟战略,显示它能够实现广泛的培训和反馈层面的最佳质量缩缩缩化,在模拟中,没有对可实现的平流流轨的图像的图像分析中支持的最小的平方端战略。