There are many potential benefits to news readers accessing diverse sources. Modern news aggregators do the hard work of organizing the news, offering readers a plethora of source options, but choosing which source to read remains challenging. We propose a new framework to assist readers in identifying source differences and gaining an understanding of news coverage diversity. The framework is based on the generation of Discord Questions: questions with a diverse answer pool, explicitly illustrating source differences. To assemble a prototype of the framework, we focus on two components: (1) discord question generation, the task of generating questions answered differently by sources, for which we propose an automatic scoring method, and create a model that improves performance from current question generation (QG) methods by 5%, (2) answer consolidation, the task of grouping answers to a question that are semantically similar, for which we collect data and repurpose a method that achieves 81% balanced accuracy on our realistic test set. We illustrate the framework's feasibility through a prototype interface. Even though model performance at discord QG still lags human performance by more than 15%, generated questions are judged to be more interesting than factoid questions and can reveal differences in the level of detail, sentiment, and reasoning of sources in news coverage.


翻译:新闻读者从不同来源获得许多潜在的好处。 现代新闻聚合者努力组织新闻,向读者提供大量来源选项,但选择哪个来源阅读仍然具有挑战性。 我们提议一个新的框架,帮助读者识别来源差异,了解新闻报道的多样性。 这个框架基于产生不和谐问题: 问题来自不同的答案库,明确显示来源差异。 要组装一个框架的原型, 我们侧重于两个组成部分:(1) 问题产生不和谐, 问题产生的任务因来源不同而回答不同, 我们为此建议一种自动评分方法, 并创建一个模型, 将当前问题产生(QG)方法的性能提高5%, (2) 回答整合, 将一个性质相似的问题的答案组合在一起, 我们为此收集数据, 并重新使用一种方法, 实现我们现实测试集的81%的平衡准确性。 我们通过一个原型界面来说明框架的可行性。 尽管不和谐QG的模型性能仍然比人类业绩低15%以上, 产生的问题被认为比事实学问题和理性层次的差异更有趣。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月30日
Arxiv
0+阅读 · 2022年12月30日
Arxiv
0+阅读 · 2022年12月30日
Arxiv
30+阅读 · 2021年8月18日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关论文
Arxiv
0+阅读 · 2022年12月30日
Arxiv
0+阅读 · 2022年12月30日
Arxiv
0+阅读 · 2022年12月30日
Arxiv
30+阅读 · 2021年8月18日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员