Learning from noisy labels plays an important role in the deep learning era. Despite numerous studies with promising results, identifying clean labels from a noisily-annotated dataset is still challenging since the conventional noisy label learning problem with single noisy label per instance is not identifiable, i.e., it does not theoretically have a unique solution unless one has access to clean labels or introduces additional assumptions. This paper aims to formally investigate such identifiability issue by formulating the noisy label learning problem as a multinomial mixture model, enabling the formulation of the identifiability constraint. In particular, we prove that the noisy label learning problem is identifiable if there are at least $2C - 1$ noisy labels per instance provided, with $C$ being the number of classes. In light of such requirement, we propose a method that automatically generates additional noisy labels per training sample by estimating the noisy label distribution based on nearest neighbours. Such additional noisy labels allow us to apply the Expectation - Maximisation algorithm to estimate the posterior of clean labels. We empirically demonstrate that the proposed method is not only capable of estimating clean labels without any heuristics in several challenging label noise benchmarks, including synthetic, web-controlled and real-world label noises, but also of performing competitively with many state-of-the-art methods.


翻译:从噪音标签中学习的噪音标签在深层次学习时代起着重要作用。尽管有许多研究取得了令人乐观的成果,但从一个有注释的数据集中找出清洁标签仍然具有挑战性,因为无法识别每个实例都有一个单声标签的常规噪音标签学习问题,也就是说,除非一个人有机会获得清洁标签或引入额外的假设,否则理论上就没有一个独特的解决办法。本文的目的是通过将噪音标签学习问题作为多声标签混合模型来正式调查这种可识别性问题,从而能够形成识别性制约。特别是,我们证明,如果每个实例至少提供2C-1美元的噪音标签,那么,就能够识别噪音标签学习问题。鉴于这种要求,我们建议采用一种方法,通过估计以近邻为主的噪音分布,在培训样本中自动产生更多的噪音标签。这些额外的噪音标签使我们能够应用期望 - 最大化算法来估计清洁标签的假象。我们的经验证明,拟议的方法不仅能够估算清洁标签的清洁标签,而且每例提供至少2C-1美元,每张的吵杂的标签数量。我们提出了一个方法,其中包括若干具有挑战性的合成噪音的合成的标签和价格标准。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2022年4月12日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员