Technology of data collection and information transmission is based on various mathematical models of encoding. The words "Geometry of information" refer to such models, whereas the words "Moufang patterns" refer to various sophisticated symmetries appearing naturally in such models. In this paper we show that the symmetries of spaces of probability distributions, endowed with their canonical Riemannian metric of information geometry, have the structure of a commutative Moufang loop. We also show that the F-manifold structure on the space of probability distribution can be described in terms of differential 3-webs and Malcev algebras. We then present a new construction of (noncommutative) Moufang loops associated to almost-symplectic structures over finite fields, and use then to construct a new class of code loops with associated quantum error-correcting codes and networks of perfect tensors.


翻译:数据收集技术和信息传输技术基于各种编码数学模型。“信息计量学”一词是指这些模型,而“穆凡模式”一词是指这类模型中自然出现的各种复杂的对称。在本文中,我们表明概率分布空间的对称,以其卡通性里伊曼式的信息几何测量尺度为特征,具有一种通俗的Moufang环形结构。我们还表明,概率分布空间上的F-maniflex结构可以用3-webs和Malcev代数来描述。然后我们提出一个新的(非互换性)Moufang环形结构,与有限字段的几乎中位结构相关联,然后用来构建与相关量子错误校正码和完美数子网相联的新型代码循环。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
29+阅读 · 2021年8月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月17日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年9月17日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
5+阅读 · 2018年5月31日
Top
微信扫码咨询专知VIP会员