The list-decodable code has been an active topic in theoretical computer science since the seminal papers of M. Sudan and V. Guruswami in 1997-1998. List-decodable codes are also considered in rank-metric, subspace metric, cover-metric, pair metric and insdel metric settings. In this paper we show that rates, list-decodable radius and list sizes are closely related to the classical topic of covering codes. We prove new general simple but strong upper bounds for list-decodable codes in general finite metric spaces based on various covering codes of finite metric spaces. The general covering code upper bounds can apply to the case when the volumes of the balls depend on the centers, not only on the radius case. Then any good upper bound on the covering radius or the size of covering code imply a good upper bound on the size of list-decodable codes. Hence the list-decodablity of codes is a strong constraint from the view of covering codes on general finite metric spaces. Our results give exponential improvements on the recent generalized Singleton upper bound of Shangguan and Tamo in STOC 2020 for Hamming metric list-decodable codes, when the code lengths are very large. The asymptotic forms of covering code bounds can partially recover the Blinovsky bound and the combinatorial bound of Guruswami-H{\aa}stad-Sudan-Zuckerman in Hamming metric setting. We also suggest to study the combinatorial covering list-decodable codes as a natural generalization of combinatorial list-decodable codes. We apply our general covering code upper bounds for list-decodable rank-metric codes, list-decodable subspace codes, list-decodable insertion codes and list-decodable deletion codes. Some new better results about non-list-decodability of rank-metric codes and subspace codes are obtained.
翻译:自1997-1998年M. Sudan和V. Guruswami的开创性论文以来,列表标记代码一直是理论计算机科学的一个活跃话题。列表标记代码也可以在等级测量、子空间测量、覆盖度测量、对称度测量和内嵌度测量设置中加以考虑。在本文中,我们显示比率、列表标记半径和列表大小与覆盖代码的古典主题密切相关。我们证明,在基于各种限定度空间代码的通用限值空间中,列表标记可标记代码具有新的简单但强的上界。当球的量依赖中心时,覆盖编码的通用上限范围可以适用于该案件。然后,在覆盖半径的半径或内嵌度的大小中,任何好的上限都意味着与列表标记代码的大小有良好的上限。因此,代码的表上位特征是一般有限度空间中包含代码的观点的强烈制约。我们的结果使得最近通用的Sloneton和Tatoo的上限值应用非上限, 不仅在半径选项中,还可以用于 Hamlistrical 列表的高级代码中,还可以将普通标记列表列表列表的高级编码的升级列表列表的升级列表中, 格式的编码中,也可以将一个新的代码插入列表的升级列表中, 以显示为硬序格式格式格式格式格式格式的新的代码,也可以的新的代码,也可以化的编码,也可以化。