We present a formal framework for the development of a family of discriminative learning algorithms for Probabilistic Context-Free Grammars (PCFGs) based on a generalization of criterion-H. First of all, we propose the H-criterion as the objective function and the Growth Transformations as the optimization method, which allows us to develop the final expressions for the estimation of the parameters of the PCFGs. And second, we generalize the H-criterion to take into account the set of reference interpretations and the set of competing interpretations, and we propose a new family of objective functions that allow us to develop the expressions of the estimation transformations for PCFGs.


翻译:我们提出了一个正式框架,用于在标准-H的通用基础上,为无背景语法(PCFGs)制定一套有区别的学习算法。 首先,我们建议将H标准作为客观功能,将增长转型作为优化方法,使我们能够为估计PCFG的参数制定最后表达方式。 其次,我们对H标准作了概括,以考虑到一套参考解释和一套相互竞争的解释,我们提出了一套新的客观功能,使我们能够为PCFGs拟订估算变化的表述方式。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2019年6月20日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2018年4月10日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
7+阅读 · 2019年6月20日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2018年4月10日
Arxiv
9+阅读 · 2018年3月28日
Top
微信扫码咨询专知VIP会员