项目名称: 高密度电子封装中金属纳米粒子修饰石墨烯/Sn-Ag-Cu钎料的设计及可靠性研究

项目编号: No.51205282

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 机械工程学科

项目作者: 韩永典

作者单位: 天津大学

项目金额: 25万元

中文摘要: 电子封装工业中,提高传统钎料性能的可行办法是加入强化相来合成复合钎料。石墨烯具有超强的电性能、力学性能和热稳定性,将其作为强化相有望大幅提高钎料性能。然而,石墨烯增强Sn基钎料存在着强化相在基体中难以均匀分布且与金属基体结合强度较差的问题。针对上述问题,本项目拟在石墨烯片上修饰金属纳米粒子,以提高石墨烯与Sn基体之间的载荷传递,并通过功能化的方法提高石墨烯在基体中的分布;合成金属粒子修饰石墨烯增强Sn-Ag-Cu无铅钎料,探明强化相对钎料微观组织、物理性能、热性能、电性能及力学性能的影响机理;研究复合材料焊点在复杂服役条件下的力学性能和界面处金属间化合物的生长机理,建立相关的物理模型。系统全面地在焊料和焊点两个层次上探究强化相/基体之间的作用关系,从而揭示强化相对基体的增强机理,探索提高Sn基无铅钎料综合性能的新方法。

中文关键词: Sn-Ag-Cu无铅钎料;Ag-石墨烯;球磨法;金属间化合物;

英文摘要: In electronic packaging industry, an effective way to enhance the performance of a conventional solder, is to intentionally incorporate foreign phases into solder matrix, forming a composite solder. Graphene has outstanding electrical, mechanical and thermal properties. It's possible to significantly improve the performance of solder using graphene as reinforcement. However, there are several problems for the graphene reinforced Sn-based solder: (i) difficulty to homogeneously disperse the graphene in the matrix, and (ii) insufficient bonding at the graphene/matrix interface. According to the above mentioned issues, we propose that metal nanoparticles are firstly decorated on the graphene to improve the interface bonding, and then the graphene is functionalized to improve the dispersion. The metal nanoparticles decorated graphene reinforced Sn-Ag-Cu solder is synthesized. Then the effect of metal nanoparticles decorated graphene on the microstructure, physical, thermal, electrical and mechanical properties of composite solder will be discussed. The interfacial microstructure and shear strength of solder joints are investigated after aging/thermal cycling tests. The physical model will be built. The relationship between reinforcing phase and matrix will be discussed for bulk solder and solder joints to reveal str

英文关键词: Sn-Ag-Cu lead-free solder;Ag-graphene nanosheets;ball milling;intermetallic compounds;

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
轻量化神经网络卷积设计研究进展
专知会员服务
55+阅读 · 2021年10月24日
专知会员服务
14+阅读 · 2021年10月18日
专知会员服务
33+阅读 · 2021年8月9日
专知会员服务
31+阅读 · 2021年5月7日
【WWW2021】少样本图学习分子性质预测
专知会员服务
35+阅读 · 2021年2月20日
基于深度学习的多标签生成研究进展
专知会员服务
142+阅读 · 2020年4月25日
2022 年你最想拥有什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月9日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月12日
Developing a Meta-suggestion Engine for Search Queries
Arxiv
11+阅读 · 2018年1月11日
小贴士
相关资讯
2022 年你最想拥有什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月9日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员